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XANES region

Why does it look like this?

• Oxidation state

• Symmetry

• Bonding
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4p

Continuum
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pre-edge

Dealing with mixtures and harnessing large datasets:

• Linear combination fitting

• Factor analysis

Bound states
Electronic structure

A few bound states + multiple scattering
Electronic + Geometric information

Absorption process 
for a 3d metal



XANES: why does it look like this?



XANES is sensitive to formal oxidation state

Chem. Commun., 2015, 51, 5951--5954Fundamentals of XAFS, Matt Newville



XANES is sensitive to local structure

J. Phys. Chem. A, Vol. 110, No. 1, 2006

Both Fe(II)-N6, but different spin and Fe-N distance

Low spin: R ≅ 2.0 Å

High spin: R ≅ 2.2 Å

Pt nanoparticles
Pt-Pt distances increase with temperature

PHYSICAL REVIEW B 78, 121404R 2008



XANES is sensitive to local structure - continued

Fe – bcc structure
Co – hcp/fcc mix

Fe in Fe/Co thin film shows XANES similar to that of Co



XANES is sensitive to bonding

J. Am. Chem. Soc., Vol. 119, No. 27, 1997

Both Ni(II), coordinated with 6 oxygen atoms
NiO: Ni-O ~ 2.09 A
Ni(OH)2 ~ 2.07 A

Data: Akhil Tayal

All Fe(III) compounds



XANES is sensitive to local symmetry 

M.L. Baker et al. / Coordination Chemistry Reviews 345 (2017) 182–208

1s → 4pz

Journal of Photochemistry and Photobiology 11 (2022) 100132



Pre-edge features: quadruple allowed transitions

CuO
Cu2O

ZnO

Cu2O, ZnO - d10 systems -  do not have any pre-edge
CuO – d9 system – has one!



Pre-edge features: effect of 4p/3d mixing

• Oh coordination has inversion 
symmetry – low mixing, 
quadruple only

• Td coordination 4p and 3dxy, 
xz, yz orbitals have the same 
symmetry – high mixing, 
intense pre-edge

• More pre-edge intensity -> 
more distortion from 
centrosymmetric geometry

Serena DeBeer, 2nd Penn State Bioinorganic Workshop, 2012
J. Am. Chem. Soc., Vol. 119, No. 27, 1997 Scientific Reports (2018) 8:8603



Pre-edge features: electronic structure fingerprinting

ChemSusChem 2018, 11, 2421 –2428



Pre-edge features: multiplet structure effects

M.L. Baker et al. / Coordination Chemistry Reviews 345 (2017) 182–208

Fe(III)Cl6 - Oh

Fe(III)Cl6 - Td

Fe(II)(H2O)6 - Oh



Pre-edge & XANES is sensitive to…

• Oxidation state

• Spin

• Multiplet structure

• Symmetry

• Bond lengths

• Covalency

XANES Software:
FEFF

Ocean
MXAN

Pre-edge: DFT



XANES analysis of mixtures &
Harnessing large datasets



XANES analysis of mixtures

• Real samples rarely contain only one species

• Composition of a sample can be analyzed 
using a set of reference spectra

J. Phys. Chem. Lett. 2021, 12, 157−164



Linear Component Fitting – 2 components

• Linear component fitting is a way to compare 
sample XAS with a combination of reference 
spectra:

𝜇𝑠𝑎𝑚𝑝𝑙𝑒 𝐸 = 𝑐1𝜇1 𝐸 + 𝑐2𝜇2 𝐸

J. Phys. Chem. Lett. 2021, 12, 157−164



Linear Component Fitting – N components

• LCF with more components:

𝜇𝑠𝑎𝑚𝑝𝑙𝑒 𝐸 = 

𝑖

𝑐𝑖𝜇𝑖 𝐸

• If many components are present in the 
sample, you might need to run many 
different combinations to figure out 
which one fits the best

From Athena documentation



Linear Component Fitting - shortcomings

• Results get unreliable when the sample 
contains phases not represented by the 
reference data, e.g. in situ data

• Analysis gets tedious with a large set of 
candidate reference spectra (combinatorics)

• Analysis gets tedious with large datasets

A typical in situ dataset that users 
take home from ISS



What can be done?

A typical in situ dataset that users 
take home from ISS

How many components are present in a given 
dataset?

Can we extract spectral components for the 
species not present in our reference data? E.g. 
intermediate states? Their concentrations?

The answer is yes! 

Let’s take a look at the problem from the linear 
algebra perspective



One spectrum as a sum of several components

𝜇 𝜇1
(𝑟𝑒𝑓)

× 
𝑐1

+ × 
𝑐2

+ = 

…

𝑐2

𝑐1

…
… × 

𝜇𝑠𝑎𝑚𝑝𝑙𝑒 𝐸 = 𝑐1𝜇1 𝐸 + 𝑐2𝜇2 𝐸 + ⋯ 𝜇 = 𝑺𝒄𝑇

𝑺 𝒄𝑇

𝜇2
(𝑟𝑒𝑓)

𝜇1
(𝑟𝑒𝑓)

𝜇2
(𝑟𝑒𝑓)



A set of spectra as a sum of contributions

This is called Factorization

A bunch of spectra {𝜇𝑖 𝐸 }
𝜇1 𝜇2 𝜇3 …

𝑨

= 

𝜇1 𝜇2 …

𝒄2

𝒄1

…

× 

𝑺 𝑪𝑇



What can be done? – again, but in a matrix form

A bunch of spectra {𝜇𝑖 𝐸 }
𝜇1 𝜇2 𝜇3 …

𝑨

= 

𝜇1 𝜇2 …

𝒄2

𝒄1

…

× 

𝑺 𝑪𝑇

How many components 
are present in a given 

dataset?
How many columns? How many rows? 

Can we extract 
component spectra?

Can we extract component 
concentrations?



Data factorizations: Linear component fitting

𝜇1 𝜇2 𝜇3 …

𝑨

= 

𝜇1 𝜇2 …

𝒄2

𝒄1

…

× 

A bunch of spectra {𝜇𝑖 𝐸 }

𝑺 𝑪𝑇

Linear component fitting (LCF):
You have references → you have S → solve for C



Data factorizations: Multivariate curve resolution (MCR)

Multivariate curve resolution (MCR):
You have references → you have S  →  solve for C  →  solve for S (with constraints)

Until convergence

𝜇1 𝜇2 𝜇3 …

𝑨

= 

𝜇1 𝜇2 …

𝒄2

𝒄1

…

× 

A bunch of spectra {𝜇𝑖 𝐸 }

𝑺 𝑪𝑇



General analysis workflow for large datasets

Recorded 
data

How many 
species/components are 
present in the dataset?

Composition, 
concentrations, 

fractions?

What are the spectra 
corresponding to 

pure species?

Multivariate Curve Resolution (MCR) 
Also known as

Non-negative Matrix Factorization (NMF)

Singular Value Decomposition (SVD)
Principal Component Analysis (PCA)

Initial Guesses + Constraints

Linear component fitting (LCF)



Some examples from ISS

R. Liu et al, Appl. Catal. B, 284 (2021), 119787 X. Qu et al, Chem. Mater. (2021)

DOI: 10.1021/acs.chemmater.0c04547



In situ study of Co/ZSM catalyst reduction

• Co is embedded in zeolite ZSM-5 framework 

• The catalyst performance was tested against method of K 
impregnation for Si/Al = 200 ratio
• Incipient Wetness Impregnation (IWI) synthesis

• Ion Exchange (IE) synthesis

• What is the kinetics of reduction and what is the degree of 
reduction at the end of the process?



Overview of the IWI and IE datasets

• Both datasets 
qualitatively show 
the signs of 
reduction

• Complex multi-
stage kinetics can 
be observed in both 
cases

• How do we analyze 
such datasets?

IWI-200 IE-200

time time



Singular Value Decomposition

Components are sorted according to their significance
Picture: wikipedia

yet another way to 
factorize your data

Model free!

A
m×n

U
m×m

S
m×n

VT

n×n



Singular Value Decomposition analysis of IE-200 dataset

Autocorrelation with lag 1: 𝐶 = σ𝑡
𝑇−1 𝑉𝑖 𝑡 𝑉𝑖(𝑡 + 1)

Component 1

Component 2
Component 3

Component 4

Component 1

Component 2

Component 3

Component 4

𝐴 = 𝑈𝑆𝑉𝑇data

Left singular vectors
Eigen-spectra

Singular values
Indicate the 

amplitude of the 
contribution of 
the component

Right singular vectors
Eigen-kinetic traces

Component 1

Component 2

Component 3

Component 4



Number of significant components: scree plot 

IE-200

IWI-200

XAFS for everyone



Number of significant components: autocorrelation

Autocorrelation:

𝐶𝑖 = 
𝑗

𝑉𝑖,𝑗𝑉𝑖,𝑗−1

(Arbitrary) threshold: 0.8

IWI-200: 3 components

IE-200 : 4 components

Singular value decomposition: 
Application to analysis of 

experimental data
Methods in Enzymology

Volume 210, 1992, Pages 129-192



Data factorizations: Multivariate curve resolution (MCR)

Multivariate curve resolution (MCR):
You have references → you have S  →  solve for C  →  solve for S (with constraints)

Until convergence

𝜇1 𝜇2 𝜇3 …

𝑨

= 

𝜇1 𝜇2 …

𝒄2

𝒄1

…

× 

A bunch of spectra {𝜇𝑖 𝐸 }

𝑺 𝑪𝑇

𝐶 = 𝐴𝑇𝑆 𝑆𝑇𝑆 −1 𝑆 = 𝐴𝐶 𝐶𝑇𝐶 −1



MCR-retrieved components VS starting solutions



Components and fractions extracted from MCR

• IWI-200 dataset is successfully 
fitted using only non-negativity 
constraint

• IE-200 fitting was done with 
fixed metallic cobalt component 
and additional constraining of 
concentrations to be above 
1.5% level improves the quality 
of retrieved spectra



In situ study of TiO2 thin film growth over ZnO 
nanowires – Project 2

• Atomic layer deposition (ALD) was used to make thin films of TiO2 over ZnO nanowires

• Ex situ measurements demonstrate that TiO2 is highly amorphous with distinctly 
different XANES from crystallin TiO2 with half of Ti4+ under-coordinated (CN=4-5)



In situ XANES reveals different ALD growth stages

• XANES spectra were recorded as a function of the ALD cycle 

• ALD cycle: titaniumisopropoxide (TTIP) and water are alternately introduced into 
the chamber as short pulses (~0.5s) separated by 60s

• The XANES spectral series readily demonstrates a two-stage growth process



MCR-ALS analysis of the XANES data

• The initial guesses were taken from the start end end of the series

• Non-negativity constraint and an additional concentration smoothness constraint were 
introduced to 

• The recovered spectra correspond to the bulk and surface signals. The surface signal pre-edge 
feature intensity closely resembles the 4-coordinated Ti4+ in both TTIP and Titanosilicate



Mixed samples/Harnessing large datasets – Conclusions

• LCF is a good first step to understand the sample composition

• PCA/SVD is a quick method to see how many components/species are 
in the spectral series

• MCR can be used to extract components/concentration profiles

• Components can be analyzed using our XANES intuition and/or 
comparing with references



Bonus: XANES and radiation-induced damage (1)



Bonus: XANES and radiation-induced damage (2)

Al 100 μm

Al 200 μm

time, s



Bonus: XANES and radiation-induced damage (3)

As(III) -> As(V) As(V) -> As(III)
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