National Synchrotron Light Source II

XANES analysis

Denis Leshchev, ISS beamline scientist NSLS-II, BNL

XANES region

Absorption process for a 3d metal

Electronic structure

Why does it look like this?

- Oxidation state
- Symmetry
- Bonding

Dealing with mixtures and harnessing large datasets:

- Linear combination fitting
- Factor analysis

XANES: why does it look like this?

XANES is sensitive to formal oxidation state

Fundamentals of XAFS, Matt Newville

Chem. Commun., 2015, 51, 5951--5954

BROOKHAVEN Science BROOKHAVEN NATIONAL LABORATORY

XANES is sensitive to local structure

ENERGY Office of Science NATIO

BROOKHAVEN

XANES is sensitive to local structure - continued

Fe – bcc structure Co – hcp/fcc mix

Fe in Fe/Co thin film shows XANES similar to that of Co

XANES is sensitive to bonding

Both Ni(II), coordinated with 6 oxygen atoms NiO: Ni-O \sim 2.09 A Ni(OH)₂ \sim 2.07 A

Ni(OH)₂ ~ 2.07 Data: Akhil Tayal BROCKHAVEN NATIONAL LABORATORY

All Fe(III) compounds

J. Am. Chem. Soc., Vol. 119, No. 27, 1997

XANES is sensitive to local symmetry

M.L. Baker et al. / Coordination Chemistry Reviews 345 (2017) 182–208

BROOKHAVEN

Journal of Photochemistry and Photobiology 11 (2022) 100132

Energy (eV)

CoPc

7740

CoPc-powder CoPc-DMF CoPc-pyridine

b)

 $1s \rightarrow 4p_{7}$

7720

Normalized µ (E)

0

7700

Office of Science

National Synchrotron Light Source II 🔳

CoPcPy₂

7760

Axial ligatio

Pyridine

Pre-edge features: quadruple allowed transitions

 Cu_2O , ZnO - d¹⁰ systems - do not have any pre-edge CuO - d⁹ system - has one!

Pre-edge features: effect of 4p/3d mixing

- Oh coordination has inversion symmetry – low mixing, quadruple only
- Td coordination 4p and 3dxy, xz, yz orbitals have the same symmetry – high mixing, intense pre-edge
- More pre-edge intensity -> more distortion from centrosymmetric geometry

Serena DeBeer, 2nd Penn State Bioinorganic Workshop, 2012 J. Am. Chem. Soc., Vol. 119, No. 27, 1997

Scientific Reports (2018) 8:8603

Office of Science **BROOKHAVEN** NATIONAL LABORATOR

Pre-edge features: electronic structure fingerprinting

Office of

Science

NERGY

BROOKHAVEN

ChemSusChem 2018, 11, 2421 – 2428

Pre-edge features: multiplet structure effects

Pre-edge & XANES is sensitive to...

- Oxidation state
- Spin
- Multiplet structure
- Symmetry
- Bond lengths
- Covalency

XANES Software: FEFF Ocean MXAN

Pre-edge: DFT

Office of Science **BROOKHAVEN** NATIONAL LABORATOR

XANES analysis of mixtures & Harnessing large datasets

XANES analysis of mixtures

- Real samples rarely contain only one species
- Composition of a sample can be analyzed using a set of reference spectra

J. Phys. Chem. Lett. 2021, 12, 157-164

Linear Component Fitting – 2 components

• Linear component fitting is a way to compare sample XAS with a combination of reference spectra:

$$\mu_{sample}(E) = c_1 \mu_1(E) + c_2 \mu_2(E)$$

J. Phys. Chem. Lett. 2021, 12, 157-164

Linear Component Fitting – N components

• LCF with more components:

Office of

BROOKHAVE

$$\mu_{sample}(E) = \sum_{i} c_{i} \mu_{i}(E)$$

 If many components are present in the sample, you might need to run many different combinations to figure out which one fits the best

From Athena documentation

Linear Component Fitting - shortcomings

- Results get unreliable when the sample contains phases not represented by the reference data, e.g. in situ data
- Analysis gets tedious with a large set of candidate reference spectra (combinatorics)
- Analysis gets tedious with large datasets

A typical in situ dataset that users take home from ISS

Office of Science NATIONAL LABORATORY

What can be done?

How many components are present in a given dataset?

Can we extract spectral components for the species not present in our reference data? E.g. intermediate states? Their concentrations?

The answer is yes!

Let's take a look at the problem from the **linear** algebra perspective

A typical in situ dataset that users take home from ISS

Office of Science **BROOKHA**

One spectrum as a sum of several components

$$\mu_{sample}(E) = c_1 \mu_1(E) + c_2 \mu_2(E) + \cdots \qquad \longrightarrow \qquad \mu = \mathbf{S}\mathbf{c}^T$$

DENERGY Office of Science Science

A set of spectra as a sum of contributions

This is called **Factorization**

What can be done? – again, but in a matrix form

Can we extract Can we extract component component spectra? concentrations?

Data factorizations: Linear component fitting

Linear component fitting (LCF): You have references \rightarrow you have S \rightarrow solve for C

Data factorizations: Multivariate curve resolution (MCR)

Multivariate curve resolution (MCR):

You have references \rightarrow you have S \rightarrow solve for C \rightarrow solve for S (with constraints)

General analysis workflow for large datasets

BROOKHAVE

Some examples from ISS

	Applied Catalysis B: Environmental 284 (2021) 119787
	Contents lists available at ScienceDirect
	Applied Catalysis B: Environmental
ELSEVIER	journal homepage: www.elsevier.com/locate/apcatb
Seniie Liu ^a Denis Les	hchev ^b Eli Stavitski ^b Mitchell Juneau ^a Jane N. Agwara ^a
Renjie Liu ^a , Denis Les Marc D. Porosoff ^a , * ¹ Department of Chemical Engineering, National Synchrotron Light Source II,	hchev ^b , Eli Stavitski ^b , Mitchell Juneau ^a , Jane N. Agwara ^a , ^{University} of Rochester, Rochester, NY, 14627, USA Brookhaven National Laboratory, Upton, NY, 11973, USA
Renjie Liu ^a , Denis Less Marc D. Porosoff ^{a, *} ^a Pepartment of Chemical Brgineering, ^b National Synchrotron Light Source II, A R T I C L E I N F O	hchev ^b , Eli Stavitski ^b , Mitchell Juneau ^a , Jane N. Agwara ^a , ^{University} of Rochester, Rochester, NY, 14627, USA Brookhaven National Laboratory, Upton, NY, 11973, USA A B S T R A C T

R. Liu et al, Appl. Catal. B, 284 (2021), 119787

BROOKHAVEN

that is physically constrained, demonstrates two specific spectral components with associated, time-dependent concentrations. The bulk-film component tracks the stages of growth. The surface and interface components, present throughout the stages of growth, reveal a significant coverage of relatively isolated or loosely networked tetrahedrally coordinated Ti atomic motifs. Finally, spectral signatures for the intra-cycle growth kinetics are reconstructed at a time resolution of ~ 1 s and demonstrate that the transient Ti motifs on the growing surface stabilize within a few seconds of the Ti precursor pulse.

> X. Qu et al, Chem. Mater. (2021) DOI: 10.1021/acs.chemmater.0c04547

In situ study of Co/ZSM catalyst reduction

- Co is embedded in zeolite ZSM-5 framework
- The catalyst performance was tested against method of K impregnation for Si/Al = 200 ratio
 - Incipient Wetness Impregnation (IWI) synthesis
 - Ion Exchange (IE) synthesis
- What is the kinetics of reduction and what is the degree of reduction at the end of the process?

Office of BROOKHAVEN Science NATIONAL LABORATORY

Overview of the IWI and IE datasets

- Both datasets qualitatively show the signs of reduction
- Complex multistage kinetics can be observed in both cases
- How do we analyze such datasets?

BROOKHAVE

Office of

Singular Value Decomposition

yet another way to factorize your data Model free!

Components are sorted according to their significance

EPARTMENT OF

NERGY

Office of

Science

Picture: wikipedia

BROOKHAVEN NATIONAL LABORATORY

Singular Value Decomposition analysis of IE-200 dataset

National Synchrotron Light Source II 🔳

BROOKHAVEN

NATIONAL LABORATORY

Number of significant components: scree plot

EPARTMENT OF

IERGY

Office of

Science

BROOKHAVEN

Figure 8.12 Yamnuska, a mountain in the Canadian Rockies. Note how the steep mountain side gives ways to a gentler slope made up of scree, which is a material made of rock fragments weathered from the mountain. Kevin Lenz. This photo is licensed under the Creative Commons Attribution-Share Alike 2.5 Generic license.

XAFS for everyone

Number of significant components: autocorrelation

Office of

Science

BROOKHAVE

Autocorrelation: $C_i = \sum_{j} V_{i,j} V_{i,j-1}$

(Arbitrary) threshold: 0.8

Singular value decomposition: Application to analysis of experimental data Methods in Enzymology Volume 210, 1992, Pages 129-192

Data factorizations: Multivariate curve resolution (MCR)

MCR-retrieved components VS starting solutions

Office of Science NATIO

BROOKHAVEN NATIONAL LABORATORY

Components and fractions extracted from MCR

- IWI-200 dataset is successfully fitted using only non-negativity constraint
- IE-200 fitting was done with fixed metallic cobalt component and additional constraining of concentrations to be above 1.5% level improves the quality of retrieved spectra

In situ study of TiO2 thin film growth over ZnO nanowires – Project 2

- Atomic layer deposition (ALD) was used to make thin films of TiO2 over ZnO nanowires
- Ex situ measurements demonstrate that TiO₂ is highly amorphous with distinctly different XANES from crystallin TiO₂ with half of Ti⁴⁺ under-coordinated (CN=4-5)

In situ XANES reveals different ALD growth stages

- XANES spectra were recorded as a function of the ALD cycle
- ALD cycle: titaniumisopropoxide (TTIP) and water are alternately introduced into the chamber as short pulses (~0.5s) separated by 60s
- The XANES spectral series readily demonstrates a two-stage growth process

MCR-ALS analysis of the XANES data

- The initial guesses were taken from the start end end of the series
- Non-negativity constraint and an additional concentration smoothness constraint were introduced to
- The recovered spectra correspond to the bulk and surface signals. The surface signal pre-edge feature intensity closely resembles the 4-coordinated Ti⁴⁺ in both TTIP and Titanosilicate

Office of Science BROOKHAVEN NATIONAL LABORATORY

Mixed samples/Harnessing large datasets – Conclusions

- LCF is a good first step to understand the sample composition
- PCA/SVD is a quick method to see how many components/species are in the spectral series
- MCR can be used to extract components/concentration profiles
- Components can be analyzed using our XANES intuition and/or comparing with references

Bonus: XANES and radiation-induced damage (1)

Bonus: XANES and radiation-induced damage (2)

Office of Science BROOKHAVEN

Bonus: XANES and radiation-induced damage (3)

Office of Science Science Science