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XANES region
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NES: why does it look like this?
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XANES is sensitive to formal oxidation state

0.0
7100

@ U.S. DEPARTMENT OF

Nomalized Absorption

NATIONAL LABORATORY

7130
E(cV)

Fundamentals of XAFS, Matt Newville

14
1.2
1.0 1
0.8 ~
0.6 -
04 ~

0.2 -

0.0

Chem. Commun., 2015, 51, 5951--5954

| = Mn203

| —MnoO

—— MnO2

—— Mn304

P 0 o »~
o o o o

Oxidation state of Mn
E
o

g
o

o

T T T T T T T T ¥ T T T g
6530 6540 6550 6560 6570 6580 6590 6600

Photo Energy (eV)

National Synchrotron Light Source II il

ESIlA 55‘46 55‘48 55‘50 55‘52
Photo Energy (eV)




XANES is sensitive to local structure

Both Fe(Il)-Ng, but different spin and Fe-N distance
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XANES is sensitive to local structure - continued
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Fe in Fe/Co thin film shows XANES similar to that of Co
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XANES is sensitive to bonding

2.0
1.75 A : FeF,
—— NiO FeCl,
1.50 Ni(OH), FeBr,
1.5
1.25
\ = Z
£ 1.00 \;. / E
2 \/ | 2 104
<
0.50 A
0.5
0.25 1
0.00
83I3 4] 8 3I4D 83I50 83I6{} 83I?D 83I80 83I90 0.0 T T T
energy, eV 7100 7110 7120 7130 7140 7150
Energy (eV)
Both Ni(ll), coordinated with 6 oxygen atoms All Fe(lll) compounds
NiO: Ni-O ~ 2.09 A
Ni(OH), ~ 2.07 A J. Am. Chem. Soc., Vol. 119, No. 27, 1997

Data: Akhil Tayal
(®ENERGY | o  BROOKHAVEN National Synchrotron Light Source [I [l



XANES is sensitive to local symmetry
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Pre-edge features: quadruple allowed transitions

Cu O run2 0001 it-i0 —— ZnO Mingzhao standard calib final 0001 iff-i0
—_ ¥
Cu20 0001 it-i0
1.2 4
0 Zn0O

1.0 - ‘ "/-\/ 1.25 1

0.8 1.00 1
w ]
3 <1
06 = 075

0.4 0.50

a / 0.25 1

0.0 = 0.00

8960 8970 8980 8990 9000 9010 9020 9030 9640 9650 9660 9670 9680 9690 9700 9710
Energy /eV Energy /eV

Cu,0, ZnO - d19 systems - do not have any pre-edge
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Normalized Absorption

Pre-edge features: effect of 4p/3d mixing
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Pre-edge features: electronic structure fingerprinting
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Pre-edge features: multiplet structure effects
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Pre-edge & XANES is sensitive to...

e Oxidation state

* Spin

 Multiplet structure XANESFE‘;EWM:

* SymmEtry Ocean
MXAN

* Bond lengths

o Covalency Pre-edge: DFT
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XANES analysis of mixtures &
Harnessing large datasets
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XANES analysis of mixtures

0.9 F —— 0.1 wt.% NICl, -
: : c —— LCF fit
* Real samples rarely contain only one species ¢
 Composition of a sample can be analyzed S 06 0.05wt.% NiCl,: 55%
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J. Phys. Chem. Lett. 2021, 12, 157-164
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Linear Component Fitting — 2 components

* Linear component fitting is a way to compare
sample XAS with a combination of reference

spectra:

@ U.S. DEPARTMENT OF

Hsample (E) = cquy(E) + coup(E)
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Linear Component Fitting — N components

: H ese@@Q 72
* LCF with more components: P | | | |
Usample (E) — E Ci.ui(E) c ' —
L % 0.8 -
* |f many components are present in the s
sample, you might need to run many 30 |
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From Athena documentation
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Linear Component Fitting - shortcomings

A typical in situ dataset that users
take home from ISS

* Results get unreliable when the sample
contains phases not represented by the
reference data, e.g. in situ data

* Analysis gets tedious with a large set of
candidate reference spectra (combinatorics)

scaled mu

* Analysis gets tedious with large datasets

energy, eV

T OF Office of
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B
What can be done?

A typical in situ dataset that users
take home from ISS
How many components are present in a given
dataset?

=
B
1

=
N
1

Can we extract spectral components for the
species not present in our reference data? E.g.
intermediate states? Their concentrations?

98
o
L

o
o

scaled mu

The answer is yes!

energy, eV

Let’s take a look at the problem from the linear
algebra perspective
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One spectrum as a sum of several components

— T
.usa‘mple(E) = C1H1(E) + CZ,LLZ(E) + - — u=3Sc

(Tef )

(ref) (ref) 1 (ref)
2

C2 .C1
I IX. + B xg+. — III X =C2

H_/
S c!

(@) ENERGY |oree  BROOKHAVEN National Synchrotron Light Source II (il



A set of spectra as a sum of contributions

This is called Factorization

A bunch of spectra {u; (E)}

H1 po U .. Uy fhy ..
: EEEE-
¥ — X l B E -
)
A S cT
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What can be done? — again, but in a matrix form

How many components

are present in a given
dataset? ‘ ‘
A bunch of spectra {u; (E)} How many columns? How many rows?
141 | - H1 Hz U3 .. Ui Uy ..
"IN . EENEN-
- i ¥ || T e
MY A% — — X HEEE-

7700 7710 7720 7730 7740

— \ J )
¥ Y
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Can we extract  Can we extract component
component spectra? concentrations?
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Data factorizations: Linear component fitting

A bunch of spectra {u; (E)}

i i : _‘ H1 Mz H3 ... Ui Uy ..
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Linear component fitting (LCF):
You have references — you have S — solve for C
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Data factorizations: Multivariate curve resolution (MCR)

A bunch of spectra {u; (E)}

- i : Hi Uz H3 .. U1 Uy ..
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Multivariate curve resolution (MCR):
You have references — you have S — solve for C — solve for S (with constraints)

1 |

Until convergence
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General analysis workflow for large datasets

Recorded How many Composition, What are the spectra
. » species/components are > concentrations, » corresponding to
present in the dataset? fractions? pure species?
7y

Singular Value Decomposition (SVD)

Principal Component Analysis (PCA) Multivariate Curve Resolution (MCR)

Also known as
Non-negative Matrix Factorization (NMF)

Linear component fitting (LCF)

Initial Guesses + Constraints

U.S. DEPARTMENT OF Offi f ' .
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Some examples from ISS

Applied Catalysis B: Environmental 284 (2021) 119787

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

ELSEVIER journal homepage: www.elsevier.com/locate/apcath

Selective hydrogenation of CO5 and CO over potassium promoted e
Co/ZSM-5

Renjie Liu”, Denis Leshchev ° Eli Stavitski °, Mitchell Juneau ®, Jane N. Agwara ”,

Marc D. Porosoff -

* Department of Chernical Engineering, University of Rochester, Rochester, NY, 14627, US4

* National Synchroron Light Source IT, Brookhaven National Laboratory, Upton, NY, 11973, USA

ARTICLEINFO ABSTRACT

Keywords: The utilization of CO2 as a C; feedstock for synthesis of value-added chemicals and fuels could both mitigate the
C0: hydrogenation ) negative effects associated with increasing COz emissions and decrease dependence on fossil fuels as part of a
Fizcher-Tropech synthesis future circular carbon y. Co-based Iysts have been well-developed for Fischer-Tropsch synthesis
ZEMS

(FTS), but replacing the CO reactant with CO3 (CO3-FTS) typically results in low selectivity toward desirable light
olefins. To better understand the structure-property relationships of Co-based catalysts, and extend promising
FTS results to COx-FTS, we have studied the effect of a p fum p and acidic properties of ZSM-5 on
catalytic performance, The selectivity of FTS and CO2-FTS is shown to be a strong function of Si/Al ratio in co-
impregnated catalysts, with findings supported by in situ XAFS and FTIR, demonstrating light olefin selectivity
can be tuned by Si/Al ratio and the method of introducing the K promoter.

XAFS
Cobalt

E_Tj] MATERIALS

pubs.acs.org/cm m

Resolving the Evolution of Atomic Layer-Deposited Thin-Film
Growth by Continuous In Situ X-Ray Absorption Spectroscopy

Xiaohui Qu, Danhua Yan, Ruoshui Li, Jiajie Cen, Chenyu Zhou, Wenrui Zhang, Deyu Lu,
Klaus Attenkofer, Dario J. Stacchiola, Mark S. Hybertsen,* Eli Stavitski,* and Mingzhao Liu*

Cite This: Chem. Mater. 2021, 33, 17401751 I: I Read Online

ACCESS Wil Metrics & More | Article Recommendations 0 Supporting Information

ABSTRACT: In situ synchrotron X-ray absorption near-edge structure . -
characterization of thin-film titania growth by atomic layer deposition (ALD)
over Zn0) nanowires reveals persistent low-coordinated Ti motifs leading to a
new picture of ALD growth. Through the design of growth and measurement
cycles, Ti K-edge spectral data are continuously recorded so as to characterize 3
the film evolution as a function of ALD cycle number and the surface changes &
=
o
a

within the time scale of the ALD cycle. A unified set of analysis tools is G643  Nanostruclured -
developed to interpret the time-series of spectral data. A prenucleation stage ‘gg'gﬂg Substrate %"“E@r_gv eV :é\ééé
of growth, a transition region, and then a steady-state growth stage are o \..___/ 4
observed with distingnishable features. Multivariate curve resolution analysis,

that is physically constrained, demonstrates two specific spectral components with associated, time-dependent concentrations. The
bulk-film component tracks the stages of growth, The surface and interface components, present throughout the stages of growth,
reveal a significant coverage of relatively isolated or loosely networked tetrahedrally coordinated Ti atomic motifs. Finally, spectral
signatures for the intra-cycle growth kinetics are reconstructed at a time resolution of ~ 1 s and demonstrate that the transient Ti
motifs on the growing surface stabilize within a few seconds of the Ti precursor pulse.

R. Liu et al, Appl. Catal. B, 284 (2021), 119787
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X. Qu et al, Chem. Mater. (2021)
DOI: 10.1021/acs.chemmater.0c04547
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In situ study of Co/ZSM catalyst reduction

e Cois embedded in zeolite ZSM-5 framework

* The catalyst performance was tested against method of K
impregnation for Si/Al = 200 ratio
* Incipient Wetness Impregnation (IWI) synthesis
* lon Exchange (IE) synthesis

 What is the kinetics of reduction and what is the degree of
reduction at the end of the process?

U.S. DEPARTMENT OF Offi f ' .
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Overview of the IWI and IE datasets

* Both datasets _wi-200 ~ 1E200
qualitatively show N NI
the signs of - 2
reduction

« Complex multi-
stage kinetics can
be observed in both =TT -
cases

* How do we analyze
such datasets? 1 o e \ e
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Singular Value Decomposition

wa —> A = ST

P N

Left singular vectors
Eigen-spectra

Right singular vectors
Eigen-kinetic traces

Singular values
Indicate the
amplitude of the
contribution of
the component

Components are sorted according to their significance
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yet another way to
factorize your data
Model free!

A = U S \VAl
mxn Mmxm MmMxN Nxn

Picture: wikipedia
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Singular Value Decomposition analysis of IE-200 dataset

E <4——— Component 1
1.4 4
1.2 1 g <—’—
3,
1.0 “ 3 / Component 3
5 n
5 08 : I’ C t4
= omponen
data —> A = USVT i -
' 1
o =14
T \ 0.4 = E 0
) G
0.2 % 10-2 _
Left singular vectors Singular values Right singular vectors 5
Eigen-spectra Indicate the Eigen-kinetic traces 0.0 1 %
amplitude of the 7700 7710 7720 y 7730 7740 7750 - 10'3 T T T T T T
energy, e
contribution of & 0 20 4 60 80 100
the component component number
015 Component 4 021
Component 3
0.10
0.1+
§ oos g Component 4
E 5 o0
§‘ 0.00 E
& Component3 | 2
- —0.05 - T 0
Component 1 \\'\\\‘
o104 Component 1
021
—0.15 - T T T T T T T T T T T T
7700 7710 7720 7730 7740 7750 o] 20 40 60 80 100

U.S. DEPARTMENT OF

Office of

ENERGY Science

NATIONAL LABORATORY

energy. ev

tme

National Synchrotron Light Source I il



e | e . -

Number of significant components: scree plot

2

0 10
2 IWI-200
>
C 10°-
LY
o
£ 1072-
0

1 1 I ! 1 I I

0 25 50 75 100 125 150

component number
1 2 |
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€ 10-2
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0 20 40 60 80 100 Figure 8.12 Yamnuska, a mountain in the Canadian Rockies. Note how the steep moun-

tain side gives ways to a gentler slope made up of scree, which is a material made of
component number rock fragments weathered from the mountain. Kevin Lenz. This photo is licensed under

the Creative Commons Attribution-Share Alike 2.5 Generic license.

XAFS for everyone
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Number of significant components: autocorrelation

1.0 4
c
9 ________________________________ 1 °
© 05 IWI1-200: 3 components AUtOCOrrEIathn .
Q e B
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© J
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S 1 R
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S
£ 0.0+ Singular value decomposition:
© , . . . Application to analysis of
5 10 15 20 25 experimental data
component number Methods in Enzymology

Volume 210, 1992, Pages 129-192
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B
Data factorizations: Multivariate curve resolution (MCR)

A bunch of spectra {u; (E)}

Hi Po Pz ... Ui Uy .
B [ -
J
A S C o
Multivariate curve resolution (MCR):
You have references — you have S — solve for C — solve for S (with constraints)
C = ATS(STS)1 Until convergence S = AC(CTC)
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MCR-retrieved components VS starting solutions

mu, a.u.

_G-E 7 / y
e foil / .
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Components and fractions extracted from MCR

1.2

a) IWI-200 b) — C0304 IWI-200
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CoO 02 T
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concentrations to be above B2 2
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In situ study of TiO2 thin film growth over ZnO
nanowires — Project 2

] : rese Ti K-edge
Amorphous TiO, on ZnO nanowires ZnO-APT
=
=
=<
E Rutile
Atomic-scale motif N
P E g
—_
O
Z.
 Tan!
G—I
T T
4950 5000 5050 5100

Energy (eV)
* Atomic layer deposition (ALD) was used to make thin films of TiO2 over ZnO nanowires

* Ex situ measurements demonstrate that TiO, is highly amorphous with distinctly
different XANES from crystallin TiO, with half of Ti** under-coordinated (CN=4-5)

U.S. DEPARTMENT OF ofﬁ f f “
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In situ XANES reveals different ALD growth stages

a b

u(E)

~ 5100
o 5050 5
° Energy eV)

* XANES spectra were recorded as a function of the ALD cycle

e ALD cycle: titaniumisopropoxide (TTIP) and water are alternately introduced into
the chamber as short pulses (~0.5s) separated by 60s

 The XANES spectral series readily demonstrates a two-stage growth process

50
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MCR-ALS analysis of the XANES data

a b c
64 —— MCRBulk L 0.6
. — MCR Surface/Interface o0
3 -
. £ 44 - 0.4 §_ —
L o = L
= S 2
= 2] 02 3 .
> w0 !
= —_ — MCR Surface/Interface
—— MCR Surface/Interface 0 00 — -——- TTIP Vapar
1 1 I 1 1 ] 1 I * I I
4950 5000 5050 5100 50 100 150 200 250 300 4950 5000 5050 510(
Energy (eV) ALD cycles (k) Energy (eV)

* The initial guesses were taken from the start end end of the series

* Non-negativity constraint and an additional concentration smoothness constraint were

introduced to

* The recovered spectra correspond to the bulk and surface signals. The surface signal pre-edge
feature intensity closely resembles the 4-coordinated Ti** in both TTIP and Titanosilicate
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Mixed samples/Harnessing large datasets — Conclusions

* LCF is a good first step to understand the sample composition

 PCA/SVD is a quick method to see how many components/species are
in the spectral series

* MCR can be used to extract components/concentration profiles

 Components can be analyzed using our XANES intuition and/or
comparing with references
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XH(E)

Bonus: XANES and radiation-induced damage (1)

1.75 4 —— PtO2 damage Pt-L3 10s XANES 0001 iff-i0
—— PtO2 damage Pt-L3 10s XANES 0002 iff-i0
—— PtO2 damage Pt-L3 10s XANES 0003 iff-i0
—— PtO2 damage Pt-L3 10s XANES 0004 iff-i0
1.50 -

PtO2 damage Pt-L3 10s XANES 0005 iff-i0

1.25

1.00 1
0.75 |
0.50
0.25 |
0.00 A
11520 11540 11560 11580 11600 11620 11640 11660 11680
Energy /eV
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XU(E)

—— K3-test 0001 iff-i0

—— K3-test 0002 iff-i0

—— K3-test 0003 iff-i0 ——eee e
1.0 1 — K3-test 0004 iff-i0

—— K3-test 0005 iff-i0
0.8 -
0.6 -
0.4 -
0.2 -
0.0

T T T T T T
24300 24350 24400 24450 24500 24550
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Bonus: XANES and radiation-induced damage (2)

1.2
—— CuBTC damage (pos 001) Cu-K 10s XANES 0001 iff-i0 —— CuBTC damage 200um (pos 005) Time scan 8981 20s 0001 iff/i0
CuBTC damage (pos 001) Cu-K 10s XANES 0002 iff-i0 CuBTC damage 100um (pos 004) Time scan 8981 20s 0001 iff/i0
—— CuBTC damage (pos 001) Cu-K 10s XANES 0003 iff-i0
—— CuBTC damage (pos 001) Cu-K 10s XANES 0004 iff-i0
1.0 1 —— CuBTC damage (pos 001) Cu-K 10s XANES 0005 iff-10 4.25 4
0.8
Al 100 um
w 0.6 =
= £
4.15
0.4
4.10 +
0.2 A
0.0 1 lJ'
4.05
T T T T T T T T
8965 8970 8975 8980 8985 8990 8995 9000 00 5’5 50 75 10.0 s 150 175
Energy /eV

time, s
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B
Bonus: XANES and radiation-induced damage (3)

2.5

—— 001 As Il pos 23 test 0001 iff-i0 —— 001 As V Hi cryo pos2 As-K 0001 iff-i0
001 As Il pos 23 test 0001-r0002 iff-i0 001 As V Hi crye pes2 As-K 0002 iff-i0
—— 001 As V Hi crye pes2 As-K 0003 iff-i0
2.0+ /
2.0
1.5 A
1.5 J
1.0 -
1.0 4 \\ >
0.5 1 0.5

As(V) -> As(I11)

XHM(E)

XU(E)

T T T T
11840 11850 11860 11870

0.0
‘ ‘ T T
11880 11890 11900 11910
Energy /eV

T T T
11840 11850 11860

T T
11870 11880
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T T
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